
Welcome!
Thank you for purchasing our AZ-Delivery MQ-135 Gas Sensor Module. On

the following pages, you will be introduced to how to use and set up this

handy device.

Have fun!

Table of Contents

Introduction 2

2

Introduction

The MQ-135 gas sensor module is a device that is used for sensing and

measuring the concentration of gases in the air. It can detect such gases as:

ammonia, sulfide, LPG, propane, methane, hydrogen, alcohol, smoke and

carbon monoxide and other harmful gasses. Though it can detect those

gases, it is not able to distinguish the difference between them.

It is moslty used as the domestic, industrial and portable air pollution

detector.

The MQ-135 is a Metal Oxide Semiconductor (MOS), also known as a

chemiresistor. The sensor contains a sensing material which resistance

changes with different gas concentrations. This change of the resistance is

used for gas detection. The sensor also has a built-in potentiometer, with

which we can adjust its sensitivity.

The sensor is enclosed within two layers of fine stainless steel mesh called

Anti-explosion network. As a result of that, it is able to detect flammable

gases without incidents. Likewise, it provides protection for the sensor, and

it filters out suspended particles. That way, only gases are able to pass

inside the sensing chamber.

The module has an on-board LM393 comparator chip which converts the

readings into digital and analog signals. There is also a potentiometer which

is used to calibrate detection sensitivity.

3

Specifications
Operating voltage: 5V

Operating current: 150mA

Power consumption: 900mW

Load resistance: 20kΩ

Heater resistance: 31Ω+5%

Sensing resistance 2kΩ - 20kΩ

Preheat time: 24h

Concentration scope: 200 – 10000ppm (parts per million)

Output: analog, digital

Dimensions: 33x21x22mm (1.3x0.8x0.9in)

For the best detecting results, gas sensor has to be preheated. The best

preheat time for the sensor is above 48 hours. For the detailed information

about the sensor specifications, refer to the datasheet.

The module sensitivity can be adjusted with an on-board potentiometer.

Moving the potentiometer shaft into the clockwise direction increases the

sensitivity. Moving the shaft of the potentiometer in the counterclockwise

direction decreases the sensitivity of the module.

4

The pinout

The gas sensor module has four pins. The pinout is shown on the following

image:

NOTE: The Raspberry Pi does not have a digital-analog converter and can

not be used to read analog voltages.

5

How to set-up Arduino IDE

If the Arduino IDE is not installed, follow the link and download the

installation file for the operating system of choice.

For Windows users, double click on the downloaded .exe file and follow the

instructions in the installation window.

6

For Linux users, download a file with the extension .tar.xz, which has to be

extracted. When it is extracted, go to the extracted directory and open the

terminal in that directory. Two .sh scripts have to be executed, the first

called arduino-linux-setup.sh and the second called install.sh.

To run the first script in the terminal, open the terminal in the extracted

directory and run the following command:

sh arduino-linux-setup.sh user_name

user_name - is the name of a superuser in the Linux operating system. A

password for the superuser has to be entered when the command is

started. Wait for a few minutes for the script to complete everything.

The second script, called install.sh, has to be used after the installation of

the first script. Run the following command in the terminal (extracted

directory): sh install.sh

After the installation of these scripts, go to the All Apps, where the Arduino

IDE is installed.

7

Almost all operating systems come with a text editor preinstalled (for

example, Windows comes with Notepad, Linux Ubuntu comes with Gedit,

Linux Raspbian comes with Leafpad, etc.). All of these text editors are

perfectly fine for the purpose of the eBook.

Next thing is to check if your PC can detect an Arduino board. Open freshly
installed Arduino IDE, and go to:

Tools > Board > {your board name here}
{your board name here} should be the Arduino/Genuino Uno, as it can be

seen on the following image:

The port to which the Arduino board is connected has to be selected. Go to:
Tools > Port > {port name goes here}

and when the Arduino board is connected to the USB port, the port name
can be seen in the drop-down menu on the previous image.

8

If the Arduino IDE is used on Windows, port names are as

follows:

For Linux users, for example port name is /dev/ttyUSBx, where x represents

integer number between 0 and 9.

9

How to set-up the Raspberry Pi and Python

For the Raspberry Pi, first the operating system has to be installed, then

everything has to be set-up so that it can be used in the Headless mode.
The Headless mode enables remote connection to the Raspberry Pi,
without the need for a PC screen Monitor, mouse or keyboard. The only
things that are used in this mode are the Raspberry Pi itself, power
supply and internet connection. All of this is explained minutely in the
free eBook:
Raspberry Pi Quick Startup Guide

The Raspbian operating system comes with Python preinstalled.

10

Connecting the module with the microcontroller

Connect the module with the microcontroller as shown on the following

image:

Module
pin

MC pin Wire color

VCC 5V Red wire

GND GND Black
wire

D0 D2 Blue wire

A0 A0 Green
wire

11

Sketch example

#define DIGITAL_PIN 2

#define ANALOG_PIN 0

uint16_t gasVal;

boolean isgas = false;

String gas;

void setup() {

Serial.begin(9600);

Serial.println("The sensor is warming up...");

delay(30000);

pinMode(DIGITAL_PIN, INPUT);

}

void loop() {

gasVal = analogRead(ANALOG_PIN);

isgas = digitalRead(DIGITAL_PIN);

if (isgas) {

gas = "No";

}

else {

gas = "Yes";

}

gasVal = map(gasVal, 0, 1023, 0, 100);

Serial.print("Gas detected: ");

Serial.println(gas);

Serial.print("Gas percentage: ");

Serial.print(gasVal);

Serial.print("%\n");

delay(2000);

}

12

Upload the sketch to the microcontroller and open Serial Monitor (Tools >

Serial Monitor). The result should look like as on the following image:

13

The sketch starts with defining and creating two macros called

DIGITAL_PIN, ANALOG_PIN.

The DIGITAL_PIN represents the digital pin of the microcontroller that is

used for connecting the digital output pin of the sensor.

The ANALOG_PIN represents the analog input pin of the microcontroller

that is used for connecting the analog output pin of the sensor.

The module data can be read in two ways. One is by reading the analog

output pin of the module, and the other is by reading the digital output pin of

the module. To read the analog output pin of the module, the variable called

gasVal is used to store return value from the analogRead() function. The

return value is an integer number in the range from 0 to 1023. To convert it

into a percentage, the map() function is used. This is a built-in function of

the Arduino IDE. It has five arguments and returns an integer value.

14

For example:
gasVal = map(input, in_min, in_max, out_min, out_max)

First argument is the input value, which is in the range from the in_min to

in_max. The return value is an integer number in the range from out_min to

out_max. This function maps one number in the input range, to other

number which is in the different range.

To read the digital output pin of the module, the isGas variable is used to

store the return value of the digitalRead() function.

At the end of the loop() function, the data is displayed in the Serial Monitor.

Between two measurements there is 2 seconds pause: delay(2000);

15

Raspberry Pi and the ADC

The Raspberry Pi cannot read analog inputs, and because of that, we will

need to use an analog-to-digital converter (ADC). An ADC is a device that,

as its name implies, converts analog voltages into digital values. We will be

using a device called “ADS1115", which uses I2C bus to send data to

microcontroller. So first we will have to enable I2C on the Raspberry Pi.

Likewise, the Raspberry Pi's GPIOs cannot handle the 5V voltages, so we

need to use a logic level converter. A logic level converter is a device that

takes a 5V signals and converts them to a 3.3V signals, and vice versa.

Most logic level converters are bi-directional, which means that they can

also convert 3.3V signals back to 5V. We will be using a device called

"TXS0108E", which is one of those bi-directional converters.

16

Connecting the MQ-135 with the Raspberry Pi

Connect everything as shown on the connection diagram below:

17

18

Enabling the I2C interface

To enable the I2C interface on Raspberry Pi, in your Raspbian, go to: Start

> Preferences > Raspberry Pi Configuration.

This will open up a new window, go to its second tab, “Interfaces”, and

enable the I2C radio button. Once you've done so, press the "ok" button like

shown on the image below:

19

Doing so enables the I2C interface on the "GPIO2" and "GPIO3" pins. Next,

we have to install the library for the ADC device. The library is called

“Adafruit_Python_ADS1x15”. To do so, open the terminal app in your

Raspbian and run these commands one by one:

sudo apt-get update

sudo apt-get install build-essential python-dev python-smbus git git clone
https://github.com/adafruit/Adafruit_Python_ADS1x15 cd
Adafruit_Python_ADS1x15

sudo python3 setup.py install

Now, we are ready to move onto the python code.

20

Python code

Create a new file called "mq135.py", and insert the following python code:

import time

import Adafruit_ADS1x15

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

digitalPin = 4

GPIO.setup(digitalPin, GPIO.IN)

adc = Adafruit_ADS1x15.ADS1115()

GAIN = 1

print("[press ctrl+c to end the script]")

try: # Main program loop

while True:

analogReading = adc.read_adc(0, gain=GAIN)

digitalReading = GPIO.input(digitalPin)

print("Analog read: {:>6}\t- Digital read: {}"

.format(analogReading, digitalReading))

time.sleep(0.5)

Scavenging work after the end of the program

except KeyboardInterrupt:

print("Script end!")

21

At the begining of the script, we import the appropriate libraries. Next, we

set up our variables and turn off the warnings. The loop is set up to do both

analog and digital readings and then output them. The analog values are

shown as six-digit numbers. Note that in the case of zero being the first

digit, zeros do not get displayed. And finally, we configure the keyboard

interrupt so that we can stop the script at any point by pressing "CTRL + C".

After the previous steps are done, run the script with the following

command:

python3 mq135.py

And the output should look similar to this:

22

As you can see on the image, we read the sensor state every half a
second. The sensor is detecting natural gases found in the air, so the
default analog values are around 12000. But when exposed to butane
gas from a lighter, the digital readings turn to mostly zeros and the
analog values spike from the 12000 up to the 25000. When digital values
are mostly zeros, this means that a gas concentration is high, while the
analog values indicate the gas concentration value.

You’ve done it!
You can now use your module for various

projects.

23

Now it is time to learn and make the Projects on your own. You can do that

with the help of many example scripts and other tutorials, which you can

find on the internet.

If you are looking for the high quality microelectronics and

accessories, AZ-Delivery Vertriebs GmbH is the right company to get
them from. You will be provided with numerous application examples,
full installation guides, eBooks, libraries and assistance from our
technical experts.

https://az-delivery.de

Have Fun!

Impressum

https://az-delivery.de/pages/about-us

24

