
E EPRO M

Part 2

Overview
EEPROM (Electrically Erasable Programmable Read-Only Memory)， a memory chip that can keep data
from interrupting power supply. In short, if you want Arduino to save some parameters after power
off, use EEPROM.

AVR chips on various types of Arduino controllers are equipped with EEPROM, as well as external
EEPROM chips. EEPROM sizes of common Arduino controllers are as follows:

The EEPROM of Arduino UNO is 1K.
The EEPROM of Arduino 2560 is 4K

Component Required:

Arduino UNO's EEPROM can only be erased 100,000 times. So you’d better not put the code that
implements the function of reading and writing data in loop().
In Arduino EEPROM library, the address of EEPROM starts at 0, and each address can store 1
Byte data. So when the data is larger than 1 Byte, it needs to read and write byte by byte.

The EEPROM of Arduino UNO and Arduino Leonardo has a storage space of 1 KB = 1024,
and the corresponding address is 0 ~ 1023.

The EEPROM of Arduino Mega2560 has 4 KB = 4096B storage space, and the corresponding
address is 0 ~ 4095.

EEPROM.write(address,value);
Function: Write data to specified address;

Parameters：
Address： EEPROM address, starting address is 0
in UNO, the range is 0~1023
in MEGA2560, the range is 0~4096

Value: data, 'byte ' or 'char' type, the range is 0~255
which means that if the incoming data is larger than
this range, it will be cut off.

EEPROM. write takes up 3 ms at a time. If the program keeps
erasing EEPROM, it won't take long to damage EEPROM.
Take care not to erase it frequently. When it is really needed,
please consider it carefully, add any delay and so on.

Code

(1) x Elegoo Uno R3

Because of the use of on-chip EEPROM, there is no need to connect wires in this course.

char company[7] = {"elegoo"};
 char company2[7] = {"0"};

 for(int i=0 ; i<6 ;i++)
 {
 EEPROM.write(i,company[i]);
 }

 for(int i=0 ; i<6 ;i++)
 {
 company2[i] = EEPROM.read(i);
 }

 Please open the program in the code folder- EEPROM and click UPLOAD to upload the program.
See Lesson 5 of part 1 for details about program uploading if there are any errors.

See Demo1 in the code for details:

EEPROM.read(address);
Function: Read data from a specified address. Read 1B data at a
time. If the specified address has no data, the read-out value is
255.

Grammar: EEPROM. read (address);
Parameters:
Address：EEPROM address, starting address is 0;
Return value: byte type, returns the data stored at the specified
address;

After you download the program, the data will be saved to
eeprom. Then you can try to comment out the program about
 EEPROM. Write. Download the program again and you can find
that the data you read from eeprom is the same as the data you
saved before, even you reset the Arduino board.
This realizes saving the data when the board is turned off.

void test1 (void)
{
 char company[7] = {"elegoo"};
 char company2[7] = {"0"};

// for(int i=0 ; i<6 ;i++)
// {
// EEPROM.write(i,company[i]);
// }

 for(int i=0 ; i<6 ;i++)
 {
 company2[i] = EEPROM.read(i);
 } }

template<typename T>
void EEPROM_write(T data1,int address)
{
union data{
T my_type;
char charbuf[];
 } data2;
data2.my_type=data1;
for(int i=address ; i<sizeof(data1) ;i++)
 {
 EEPROM.write(i , data2.charbuf[i]);
 }
 }

Click the Serial Monitor button to turn on the serial monitor. The basics about the serial monitor are
introduced in details in Lesson 4 of part 2.

The address of EEPROM starts at 0, and each address can store 1B data.

EEPROM. write and EEPROM. read can only operate on single-byte data (such as char, byte type data)

If the incoming data (such as int, float, etc.) is larger than
1B, it will be truncated, so when the data is larger than
1B, it needs to be read and written byte by byte.

So next we'll write EEPROM read and write functions
for all types.

In this example, we used the function template to
apply to various data types.

See demo2 in code for details.

template<typename T>
The template header <> can be either an undetermined data type defined by typename or
an explicit data type.

'T' is the generic name of the category. The data types you use are int, char, float, double and so on.

The format above is the function template. union:Several different
types of variables are stored in the same memory unit.
That is to say, using coverage technology, several variables cover
each other. This structure, in which several different variables
occupy a section of memory together, is called union.

Based on the nature of the union, we store the data to be written to EEPROM in the same type of
union member''my_type'. Since "my_type" and "charbuf[]" occupy the same memory, so we
write an array of char type "charbuf" in bytes to eeprom, which is equivalent to writing'my_type'to
eeprom, and EEPROM_read can be obtained equally.

implementation of EEPROM_write

union data{
T my_type;
char charbuf[];
} data2;

