
Welcome!
Thank you for purchasing our AZ-Delivery MQ-2 Gas Sensor Module. On

the following pages, you will be introduced to how to use and set up this

handy device.

Have fun!

Table of Contents

Introduction 3

Specifications 4

The pinout 5

How to set-up the Raspberry Pi and Python 10

Connecting the module with ATmega328p 11

Sketch example 12

Connecting Nano V3.0 as ADC for Raspberry Pi 17

Connecting the module with Raspberry Pi 21

Python script for MQ-2 module 28

Introduction

The MQ-2 gas sensor module is a device that is used for sensing and

measuring the concentration of gases in the air. It can detect such gases as:

LPG, propane, methane, hydrogen, alcohol, smoke and carbon monoxide.

Though it can detect those gases, it is not able to distinguish the difference

between them.

The MQ-2 is a Metal Oxide Semiconductor (MOS), also known as a

chemiresistor. The sensor contains a sensing material which resistance

changes with different gas concentrations. This change of the resistance is

used for gas detection. The sensor also has a built-in potentiometer, with

which we can adjust its sensitivity.

The sensor is enclosed within two layers of fine stainless steel mesh called

Anti-explosion network. As a result of that, it is able to detect flammable

gases without incidents. Likewise, it provides protection for the sensor, and

it filters out suspended particles. That way, only gases are able to pass

inside the sensing chamber.

The module has an on-board LM393 comparator chip which converts the

readings into digital and analog signals. There is also a potentiometer which

is used to calibrate detection sensitivity.

Specifications

Operating voltage: 5V

Operating current: 150mA

Power consumption: 900mW

Load resistance: 20kΩ

Heater resistance: 33Ω+5%

Sensing resistance 10kΩ - 60kΩ

Preheat time: 24h

Concentration scope: 200 – 10000ppm (parts per million)

Output: analog, digital

Dimensions: 33x21x22mm (1.3x0.8x0.9in)

For the best detecting results, gas sensor has to be preheated. The best

preheat time for the sensor is above 24 hours. For the detailed information

about the sensor specifications, refer to the datasheet.

The module sensitivity can be adjusted with an on-board potentiometer.

Moving the potentiometer shaft into the clockwise direction increases the

sensitivity. Moving the shaft of the potentiometer in the counterclockwise

direction decreases the sensitivity of the module.

The pinout

The gas sensor module has four pins. The pinout is shown on the following

image:

NOTE: The Raspberry Pi does not have a digital-analog converter and can

not be used to read analog voltages.

How to set-up Arduino IDE

If the Arduino IDE is not installed, follow the link and download the

installation file for the operating system of choice.

For Windows users, double click on the downloaded .exe file and follow the

instructions in the installation window.

For Linux users, download a file with the extension .tar.xz, which has to be

extracted. When it is extracted, go to the extracted directory and open the

terminal in that directory. Two .sh scripts have to be executed, the first

called arduino-linux-setup.sh and the second called install.sh.

To run the first script in the terminal, open the terminal in the extracted

directory and run the following command:

sh arduino-linux-setup.sh user_name

user_name - is the name of a superuser in the Linux operating system. A

password for the superuser has to be entered when the command is

started. Wait for a few minutes for the script to complete everything.

The second script, called install.sh, has to be used after the installation of

the first script. Run the following command in the terminal (extracted

directory): sh install.sh

After the installation of these scripts, go to the All Apps, where the Arduino

IDE is installed.

Almost all operating systems come with a text editor preinstalled (for

example, Windows comes with Notepad, Linux Ubuntu comes with Gedit,

Linux Raspbian comes with Leafpad, etc.). All of these text editors are

perfectly fine for the purpose of the eBook.

Next thing is to check if your PC can detect an the microcontroller board.
Open freshly installed Arduino IDE, and go to:

Tools > Board > {your board name here}
{your board name here} should be the Microcontroller/Genuino Uno, as it

can be seen on the following image:

The port to which the microcontroller board is connected has to be selected.
Go to: Tools > Port > {port name goes here}

and when the microcontroller board is connected to the USB port, the port
name can be seen in the drop-down menu on the previous image.

If the Arduino IDE is used on Windows, port names are as

follows:

For Linux users, for example port name is /dev/ttyUSBx, where x represents

integer number between 0 and 9.

How to set-up the Raspberry Pi and Python

For the Raspberry Pi, first the operating system has to be installed, then

everything has to be set-up so that it can be used in the Headless mode.
The Headless mode enables remote connection to the Raspberry Pi,
without the need for a PC screen Monitor, mouse or keyboard. The only
things that are used in this mode are the Raspberry Pi itself, power
supply and internet connection. All of this is explained minutely in the
free eBook:
Raspberry Pi Quick Startup Guide

The Raspbian operating system comes with Python preinstalled.

Connecting the module with ATmega328p

Connect the module with the ATmega328p as shown on the following
image:

Module
pin

ATmega
328p pin

Wire color

VCC 5V Red wire

GND GND Black
wire

D0 D2 Blue wire

A0 A0 Green
wire

Sketch example

#define DIGITAL_PIN 2

#define ANALOG_PIN 0

uint16_t gasVal;

boolean isgas = false;

String gas;

void setup() {

Serial.begin(9600);

Serial.println("The sensor is warming up...");

delay(30000);

pinMode(DIGITAL_PIN, INPUT);

}

void loop() {

gasVal = analogRead(ANALOG_PIN);

isgas = digitalRead(DIGITAL_PIN);

if (isgas) {

gas = "No";

}

else {

gas = "Yes";

}

gasVal = map(gasVal, 0, 1023, 0, 100);

Serial.print("Gas detected: ");

Serial.println(gas);

Serial.print("Gas percentage: ");

Serial.print(gasVal);

Serial.print("%\n");

delay(2000);

}

Upload the sketch to the ATmega328p and open Serial Monitor (Tools >

Serial Monitor). The result should look like as on the following image:

The sketch starts with defining and creating two macros called

DIGITAL_PIN, ANALOG_PIN.

The DIGITAL_PIN represents the digital pin of ATmega328p that is used for

connecting the digital output pin of the sensor.

The ANALOG_PIN represents the analog input pin of ATmega328p that is

used for connecting the analog output pin of the sensor.

The module data can be read in two ways. The one is by reading the analog

output pin of the module, and the other is by reading the digital output pin of

the module. To read the analog output pin of the module, the variable called

gasVal is used to store return value from the analogRead() function. The

return value is an integer number in the range from 0 to 1023. To convert it

into a percentage, the map() function is used. This is a built-in function of

the Arduino IDE. It has five arguments and returns an integer value.

For example:
gasVal = map(input, in_min, in_max, out_min, out_max)

First argument is the input value, which is in the range from the in_min to

in_max. The return value is an integer number in the range from out_min to

out_max. This function maps one number in the input range, to other

number which is in the different range.

To read the digital output pin of the module, the isGas variable is used to

store the return value of the digitalRead() function.

At the end of the loop() function, the data is displayed in the Serial Monitor.

Between two measurements there is 2 seconds pause: delay(2000);

Connecting Nano V3.0 as ADC for Raspberry Pi

Because the Raspberry Pi does not have Analog to Digital Converter

(ADC), the task is to make the Raspberry Pi able to read analog voltages.

For this purpose ATmega328p or Nano V3.0 can be used. In order to do so,

Nano V3.0 V3.0 has to be connected to the Raspbian operating system.

Nano V3.0 can read analog voltages, and it can use Serial Interface via

USB port to send data to the Raspberry Pi.

First, the Arduino IDE has to be installed on the Raspbian. Second, the

firmware for the microcontroller board needs to be uploaded to Nano V3.0

and Python library has to be downloaded.

To do this, start the Raspbian, open the terminal, and run the following

command to update the Raspbian:

sudo apt-get update && sudo apt-get upgrade -y

To download and install the Arduino IDE, go to the Arduino site: and

download the tar.xz file of Arduino IDE for Linux ARM 32 bits as shown on

the following image:

Then, extract the tar.xz file. Open file explorer in directory where tar.xz file is

downloaded, right click on it, and run the option Extract Here. Wait for a few

minutes for the extracting process to be completed.

Open the terminal in the directory where installation files are extracted and

run the following command:

sh arduino-linux-setup.sh pi

where pi is the name of the superuser in Raspbian.

After this, to install the Arduino IDE, run the following
command: sudo sh install.sh

The Arduino IDE is now installed. To run Arduino IDE, open the app:

Applications Menu > Programming > Arduino IDE

Before the next steps, first the pip3 and git apps have to be installed;

Open the terminal and run the following command.

sudo apt install python3-pip git -y

The library for Python is called nanpy. To install it, open terminal and run

the following command: pip3 install nanpy

After installation of the nanpy library, download a firmware by running the

following command:

git clone https://github.com/nanpy/nanpy-firmware.git

Change the directory to nanpy-firmware by running the following command:

cd nanpy-firmware

And run the following command:
sh configure.sh

Next, copy the nanpy-firmware directory into:

Arduino/libraries directory.

To do so, run the following command:
cp -avr nanpy-firmware/ ~/Arduino/libraries

The nanpy-firmware is now installed and ready to be used.

Connecting the module with Raspberry Pi

Connect the module with the Nano V3.0 as shown on the following image:

Module pin Nano
V3.0 pin

Wire color

VCC 5V Red wire

GND GND Black
wire

D0 D2 Blue wire

A0 A0 Green
wire

Next, connect the Nano V3.0 via USB cable to the Raspberry Pi and

open the Arduino IDE in the Raspbian operating system. Check if

Arduino IDE can detect the USB port on which the Nano V3.0 is

connected: Tools > Port > dev/ttyUSB0

Then, go to: Tools > Board > {board name}

and select Nano V3.0 board.

After that, to open a sketch for the nanpy-firmware, go to: File >

Examples > nanpy-firmware > Nanpy

Upload the sketch to the Nano V3.0. To test if everything works properly,

the simple Blink script has to be created, where the on-board LED of the

Nano V3.0 is used to blink.

Create the Blink.py script, and open it in the default text editor.

In the Blink.py script write the following lines of code:

from nanpy import (ArduinoApi, SerialManager) from time

import sleep

ledPin = 13

try:

connection1 = SerialManager()

a = ArduinoApi(connection=connection1) except:

print('Failed to connect to the Arduino') print('[Press CTRL

+ C to end the script!]') a.pinMode(ledPin, a.OUTPUT) #

Setup Arduino try:

while True:

a.digitalWrite(ledPin, a.HIGH)

print('Bulit in led HIGH')

sleep(1)

a.digitalWrite(ledPin, a.LOW)

print('Bulit in led LOW')

sleep(1)

except KeyboardInterrupt:

print('\nScript end!')

a.digitalWrite(ledPin, a.LOW)

Save the script by the name Blink.py. To run the script, open the terminal in

the directory where the script is saved and run the following command:

python3 Blink.py

The result should look like as on the following image:

To stop the script press ‘CTRL + C’ on the keyboard.

The LED connected to the digital pin 13 of the Nano V3.0 should start

blinking every second.

The script starts with importing two libraries, the nanpy library functions, and

the time.

Then, the variable called ledPin is created and initialized with number 13.

The number 13 represents the number of the digital pin on which LED is

connected (on-board LED of the Nano V3.0).

After that, the try-except block of code is used to try and connect to the

Nano V3.0. If connection is not successful, message:

Failed to connect to the microcontroller board is displayed in the terminal.

If connection is successful, a communication object called "a" is created

and initialized. The object "a" represents the Nano V3.0 board. Any function

used in the Arduino IDE can be used with the "a" object, as it can be seen in

the code.

With the following line of code, the pin mode is set-up for the digital pin
13: a.pinMode(ledPin, a.OUTPUT)

Then, in the indefinite loop block (while True:) the function digitalWrite() is

used to set the state of the digital pin 13 (HIGH or LOW state). With the

digitalWrite() function the LED connected to the pin 13 can be turned ON or

OFF.

In the indefinite loop block, the LED is first turned ON for a second, and

then turned OFF for a second. This is called blinking the LED. The time

interval of a single blink can be changed in the following line of code:

sleep(1)

Where number 1 represents the number of seconds for the duration of the

time interval.

To end the indefinite loop, press ‘CTRL + C’ on the keyboard. This is called

the keyboard interrupt, which is set in the except block (except

KyeboardInterrupt). In the except block the on-board LED is turned OFF.

Python script for MQ-2 module

from nanpy import (ArduinoApi, SerialManager)

import time

try:

connection_1 = SerialManager()

a = ArduinoApi(connection=connection_1)

except:

print('Failed to connect to the Arduino')

DIGITAL_PIN = 2

ANALOG_PIN = 0

time.sleep(2)

print('Sensor is warming up...')

print('[Press CTRL+C to end the script]')

time.sleep(5) # Sensor warming up...

try:

while True:

analogReading = a.analogRead(ANALOG_PIN)

digitalReading = a.digitalRead(DIGITAL_PIN)

print("Analog read: {}\nDigital read: {}\n".format(analogReading, digitalReading))

time.sleep(2)

except KeyboardInterrupt:

print('\nScript end!')

Save the script by the name mq2nan.py. To run the script, open the terminal

in the directory where the script is saved and run the following command:

python3 mq2nan.py

The result should look like as on the following image:

To stop the script press ‘CTRL + C’ on the keyboard.

Now it is the time to learn and make your own projects. You can do that with

the help of many example scripts and other tutorials, which can be found on

the Internet.

If you are looking for the high quality microelectronics and

accessories, AZ-Delivery Vertriebs GmbH is the right company to get
them from. You will be provided with numerous application examples,
full installation guides, eBooks, libraries and assistance from our
technical experts.

https://az-delivery.de

Have Fun!

Impressum

https://az-delivery.de/pages/about-us

