
Welcome!

Thank you for purchasing our AZ-Delivery HC-SR04 Ultrasonic Sensor

Module. On the following pages, you will be introduced to how to use and set

up this handy device.

Have fun!

Table of Contents

Introduction..3

Calculating the distance..4

Specifications..6

The pinout...7

How to set-up Arduino IDE..8

How to set-up the Raspberry Pi and Python...12

Connecting the module with Uno...13

Sketch example...14

Connecting the module with Raspberry Pi..18

Libraries and tools for Python..20

Python script..21

- 2 -

Introduction

The HC-SR04 ultrasonic sensor module is a device that can measure

distance using ultrasonic sound waves. It can determine the distance

between the module and other objects in vicinity with high accuracy.

The sensor is commonly used in obstacle avoiding devices, various

distance measuring devices, automation projects, car parking systems,

proximity alarms, etc.

The module consists of an ultrasonic transmitter, receiver, on-board

electronic parts like amplifier chips, a crystal oscillator and other passive

components like capacitors and resistors.

The operation principle of the module is the following. The ultrasonic sound

waves are transmitted by the on-board transmitter. When there is an

obstacle in front of the module, the ultrasonic sound waves get reflected by

an obstacle back to the module. The reflected ultrasonic sound wave then

gets picked up by the on-board receiver. This is then output on the ECHO

pin as a digital signal with a frequency that is directly related to the time

required for an ultrasonic sound wave to travel from the module to the

obstacle and back to the receiver.

- 3 -

Calculating the distance

The module emits ultrasonic sound waves on a frequency that is higher

than the human hearing range (more than 20kHz). The speed of the sound

waves traveling through the air is approximately 343m/s at room

temperature (20°C). This speed value depends on the environmental

circumstances like temperature, humidity and variations in air pressure. The

speed of sound in the air actually depends much more on the temperature

and very little on humidity and the pressure of air. It increases its value

approximately 0.6m/s per degree of Celsius. In most cases at a temperature

of 20°C, the value of 343 m/s can be used. To accurately calculate the

speed of the ultrasonic sound wave in the air, use the following formula:

V (m/s) = 331.3 + (0.606 × T)

where V (m/s) is the speed of ultrasonic sound wave in the air and T (°C) is

the temperature of the air.

When the speed of the ultrasonic sound wave is multiplied by the time that

the ultrasonic sound wave traveled from the module to the obstacle and

back, the result is the distance from the module to the obstacle and back:

Distance = Speed x Time

- 4 -

Because the sound waves travel 343 meters per one second, to measure

distances from 20mm up to 4000mm (the range of the module) the

measurements are done in microseconds. So, the speed of the ultrasonic

sound waves should be converted from the m/s into cm/µs, which is:

343m/s = 0.0343 cm/µs = 1/29 cm/µs

13503.9in/s = 0.0135 in/µs = 1/74 in/µs (used in the sketch)

Then, to get the actual distance between the module and obstacle, the

previous result should be divided by two, because the ultrasonic sound

wave travels from the module to the obstacle and back, so calculation goes

like this:

Distance (cm) = Speed of sound (cm/µs) × Time (µs) / 2

- 5 -

Specifications

Power supply voltage: up to 5V

Operating voltage: from 3V to 5V

Output voltage: 5V!

Current consumption: 15mA

Quiescent current: less than 2mA

Ultrasonic frequency: 40kHz

Trigger input signal: 10µS TTL pulse

Measuring angle: 30 degree

Effectual angle: less than 15 degrees

Operating distance range: from 20mm to 4000mm (1in to 13 feet)

Claimed precision: 3mm, realistically 10mm

Dimensions: 45 x 20 x 15mm (1.8 x 0.8 x 0.6in)

The minimal distance on which the measurements are valid is 20mm. Below

this threshold the readings may become unpredictable.

- 6 -

The pinout

The HC-SR04 module has four pins. The pinout is shown on the following

image:

Note: The output voltage of the module is in the 5V range. In order to use

the module with the Raspberry Pi, the device called logic level converter

should be used. Otherwise connecting 5V signals to the GPIO pins may

cause damage to the Raspberry Pi. For this purpose use the device called

TXS0108E Logic Level Converter that AZ-Delivery offers.

- 7 -

https://az-delivery.com/products/logiklevel-wandler-3-3v-5v?_pos=3&_sid=e622e3656&_ss=r

How to set-up Arduino IDE

If the Arduino IDE is not installed, follow the link and download the

installation file for the operating system of choice.

For Windows users, double click on the downloaded .exe file and follow

the instructions in the installation window.

- 8 -

https://www.arduino.cc/en/Main/Software

For Linux users, download a file with the extension .tar.xz, which has to

be extracted. When it is extracted, go to the extracted directory and open

the terminal in that directory. Two .sh scripts have to be executed, the first

called arduino-linux-setup.sh and the second called install.sh.

To run the first script in the terminal, open the terminal in the extracted

directory and run the following command:

sh arduino-linux-setup.sh user_name

user_name - is the name of a superuser in the Linux operating system. A

password for the superuser has to be entered when the command is

started. Wait for a few minutes for the script to complete everything.

The second script, called install.sh, has to be used after the installation

of the first script. Run the following command in the terminal (extracted

directory): sh install.sh

After the installation of these scripts, go to the All Apps, where the Arduino

IDE is installed.

- 9 -

Almost all operating systems come with a text editor preinstalled (for

example, Windows comes with Notepad, Linux Ubuntu comes with

Gedit, Linux Raspbian comes with Leafpad, etc.). All of these text

editors are perfectly fine for the purpose of the eBook.

Next thing is to check if your PC can detect an Arduino board. Open freshly

installed Arduino IDE, and go to:

Tools > Board > {your board name here}

{your board name here} should be the Arduino/Genuino Uno, as it

can be seen on the following image:

The port to which the Arduino board is connected has to be selected. Go to:

Tools > Port > {port name goes here}

and when the Arduino board is connected to the USB port, the port name

can be seen in the drop-down menu on the previous image.

- 10 -

If the Arduino IDE is used on Windows, port names are as follows:

For Linux users, for example port name is /dev/ttyUSBx, where x

represents integer number between 0 and 9.

- 11 -

How to set-up the Raspberry Pi and Python

For the Raspberry Pi, first the operating system has to be installed, then

everything has to be set-up so that it can be used in the Headless mode.

The Headless mode enables remote connection to the Raspberry Pi,

without the need for a PC screen Monitor, mouse or keyboard. The only

things that are used in this mode are the Raspberry Pi itself, power supply

and internet connection. All of this is explained minutely in the free eBook:

Raspberry Pi Quick Startup Guide

The Raspbian operating system comes with Python preinstalled.

- 12 -

https://www.az-delivery.de/products/raspberry-pi-kostenfreies-e-book?ls=en

Connecting the module with Uno

Connect the module with the Uno as shown on the following image:

Module pin Uno pin Wire color

VCC 5V Red wire

TRIG D2 Green wire

ECHO D3 Blue wire

GND GND Black wire

- 13 -

Sketch example

#define TRIG_PIN 2

#define ECHO_PIN 3

long duration, cm, inches;

void setup() {

 Serial.begin(9600);

 pinMode(TRIG_PIN, OUTPUT);

 pinMode(ECHO_PIN, INPUT);

}

void loop() {

 digitalWrite(TRIG_PIN, LOW);

 delayMicroseconds(5);

 digitalWrite(TRIG_PIN, HIGH);

 delayMicroseconds(10);

 digitalWrite(TRIG_PIN, LOW);

 duration = pulseIn(ECHO_PIN, HIGH);

 cm = (duration / 2) / 29.1; // Divide by 29.1 or multiply by 0.0343

 inches = (duration / 2) / 74; // Divide by 74 or multiply by 0.0135

 Serial.print(inches);

 Serial.print("in, ");

 Serial.print(cm);

 Serial.print("cm");

 Serial.println();

 delay(500);

}

- 14 -

Upload the sketch to the Uno and run the Serial Monitor (Tools > Serial

Monitor). The result should look like as on the following image:

- 15 -

The sketch starts with creating two macros TRIG_PIN and ECHO_PIN.

These macros represent the digital pins of Uno to which pins of the module

are connected.

Next, three long variables are created duration, cm and inches. In the

duration variable the time interval of the measurement is saved. In the cm

variable the calculated distance in the centimeters is stored. In the inches

variable the calculated distance in the inches is stored.

In the setup() function, serial communication is started with a baud rate of

9600bps. After this the modes for digital pins are set: TRIG_PIN as OUTPUT

and ECHO_PIN as INPUT.

At the beginning of the loop() function, TRIG_PIN is activated in the

following manner:

First, the state of the TRIG_PIN is held in LOW state for 5 microseconds,

next it is held in the HIGH state for the 10 microseconds and then again it is

set in the LOW state. This way, the ultrasonic sound wave is transmitted at

the specific time interval so that the measurements can take place.

Next, the function pulseln() is used to measure the length of the pulse

on the ECHO_PIN. The function has two arguments and returns a long

value. The first argument is the name of the pin on which the measurement

takes place.

- 16 -

The second argument of the pulseln() function can have two values:

HIGH or LOW. When the value of the second argument is HIGH, the

function waits for the signal on the ECHO_PIN to change its state from LOW

to HIGH to start the measurement. If the value of the second argument is

LOW, then the function waits for the signal on the ECHO_PIN to change its

state from HIGH to LOW to start the measurement. The return value is the

unsigned long value, which represents the length of the pulse in

microseconds.

The following line of code is used to measure the length of the pulse on the

ECHO_PIN:

duration = pulseIn(ECHO_PIN, HIGH);

Where the return value from the pulseln() function is stored in the

duration variable.

Next, the distance calculation is done, with the following lines of code:

cm = (duration / 2) / 29.1;

inches = (duration / 2) / 74;

After this, the data is displayed in the Serial Monitor.

At the end of the loop() function, a delay pause of a half second is set.

This pause represents the pause between two measurements.

- 17 -

Connecting the module with Raspberry Pi

Connect the module with the Raspberry Pi as shown on the following

image:

- 18 -

Module pin Logic Level Converter (LLC) pin Wire color

VCC VB Red wire

TRIG B7 Blue wire

ECHO B8 Green wire

GND GND Black wire

LLC pin Raspberry Pi pin Physical pin Wire color

VB 5V 4 Red wire

VA 3V3 1 Orange wire

A7 GPIO23 16 Blue wire

A8 GPIO24 18 Green wire

GND GND 25 Black wire

OE 3V3 via 10kΩ * 1 Orange wire

* Connect the OE pin of the LLC with 3V3 via 10kΩ resistor (pull-up resistor)

to enable the LLC operation.

- 19 -

Libraries and tools for Python

To use the module with the Raspberry Pi, the library RPi.GPIO has to be

installed. If the library is not installed, open the terminal and run the

following commands, one by one:

sudo apt-get update && sudo apt-get upgrade -y

sudo apt-get install python3-rpi.gpio

The example of the original script made by Matt Hawkins can be found on

the following link.

- 20 -

https://bitbucket.org/MattHawkinsUK/rpispy-misc/raw/master/python/ultrasonic_2.py

Python script

import time

import RPi.GPIO as GPIO

def measure():

 speed_of_sound = 34300

 GPIO.output(TRIG_PIN, True)

 time.sleep(0.00001)

 GPIO.output(TRIG_PIN, False)

 start = time.time()

 while GPIO.input(ECHO_PIN) == 0:

 start = time.time()

 while GPIO.input(ECHO_PIN) == 1:

 stop = time.time()

 elapsed = stop - start

 distance = (elapsed * speed_of_sound) / 2

 return distance

def measure_average():

 distance1 = measure()

 time.sleep(0.1)

 distance2 = measure()

 time.sleep(0.1)

 distance3 = measure()

 distance = distance1 + distance2 + distance3

 distance = distance / 3

 return distance

- 21 -

GPIO.setmode(GPIO.BCM)

TRIG_PIN = 23

ECHO_PIN = 24

GPIO.setup(TRIG_PIN, GPIO.OUT)

GPIO.setup(ECHO_PIN, GPIO.IN)

print('[Press Ctrl + C to end program!]')

try:

 GPIO.output(TRIG_PIN, False)

 time.sleep(0.5)

 while True:

 distance = measure_average()

 print('Distance: {:5.1f}cm'.format(distance))

 time.sleep(1)

except KeyboardInterrupt:

 print('\nScript end!')

finally:

 GPIO.cleanup()

- 22 -

Save the script by the name ultrasonic.py. To run the script, open the

terminal in the directory where the script is saved and run the following

command:

python3 ultrasonic.py

The result should look like as on the following image:

To stop the script press ‘CTRL + C’ on the keyboard.

- 23 -

The script starts with importing two libraries: time and RPi.GPIO.

Next, two functions are created: measure() and measure_average().

Both functions have no arguments and return the double value. The

measure() function is used to do the distance measurement and

calculation. The algorithm for measuring and calculating the distance is in

this function. The measure_average() function is used to do three

measurements and make an average value out of three measurements.

The return value of these functions represents the calculated distance

value.

Then, the GPIO pin naming is set to BCM, and the GPIO pin modes for

TRIG_PIN and ECHO_PIN are set to output and input, respectively.

After this, the try-except-finally block of code is created. In the try

block of code the state of TRIG_PIN is set to LOW, after which the

indefinite loop block of code is created (while True:).

In the indefinite loop block of code, first, the measure_average() function

is executed and the return value is stored to the distance variable. Next, the

value in the distance variable is displayed in the terminal, with the following

line of code:

print('Distance: {:5.1f}cm'.format(distance))

- 24 -

Where “5.1f”: “5” means the output contains 5 decimal places; “.1” means

that there is one digit after the decimal point; and “f” means that the value

is of type float.

To stop the script press ‘CTRL + C’ on the keyboard. This is called the

keyboard interrupt. When the keyboard interrupt happens, the except

block of code is executed, displaying message Script end! in the

terminal.

The finally block of code is executed at the script end. When the

finally block of code is executed, the function called cleanup() is

executed. The cleanup() function disables all used GPIO interfaces and

GPIO pin modes.

- 25 -

Now it is the time to learn and make your own projects. You can do that with

the help of many example scripts and other tutorials, which can be found on

the Internet.

If you are looking for the high quality products for Arduino and

Raspberry Pi, AZ-Delivery Vertriebs GmbH is the right company to get

them from. You will be provided with numerous application examples,

full installation guides, eBooks, libraries and assistance from our

technical experts.

https://az-delivery.de

Have Fun!

Impressum

https://az-delivery.de/pages/about-us

- 26 -

https://az-delivery.de/pages/about-us
https://az-delivery.de/

	Table of Contents
	Introduction
	Calculating the distance
	Specifications
	The pinout
	How to set-up Arduino IDE
	How to set-up the Raspberry Pi and Python
	Connecting the module with Uno
	Sketch example

	Connecting the module with Raspberry Pi
	Libraries and tools for Python
	Python script

