
 Eight LED
with 74HC595

Part 2

Overview
In this lesson, you will learn how to use eight large red LEDs with an UNO without needing to
give up 8 output pins!

Although you could wire up eight LEDs each with a resistor to an UNO pin, you would rapidly
start to run out of pins on your UNO. If you don't have a lot of stuff connected to your UNO.
It's OK to do so - but often times we want buttons, sensors, servos, etc. and before you know it
you've got no pins left. So, instead of doing that, you are going to use a chip called the 74HC595
Serial to Parallel Converter. This chip has eight outputs (perfect) and three inputs that you use to
feed data into it a bit at a time.

This chip makes it a little slower to drive the LEDs (you can only change the LEDs about 500,000
times a second instead of 8,000,000 a second) but it's still really fast, way faster than humans can
detect, so it's worth it!

Component Required:

The shift register is a type of chip that holds what can be thought of as eight memory locations, each
of which can either be a 1 or a 0. To set each of these values on or off, we feed in the data using the 'Data'
and 'Clock' pins of the chip.

The clock pin needs to receive eight pulses. At each
pulse, if the data pin is high, then a 1 gets pushed into
the shift register; otherwise, a 0. When all eight pulses
have been received, enabling the 'Latch' pin copies
those eight values to the latch register. This is
necessary; otherwise, the wrong LEDs would flicker as
the data is being loaded into the shift register.

The chip also has an output enable (OE) pin, which is
used to enable or disable the outputs all at once.
You could attach this to a PWM-capable UNO pin and
use 'analogWrite' to control the brightness of the LEDs.
This pin is active low, so we tie it to GND.

74HC595 Shift Register:

Component Introduction

(1) x Elegoo Uno R3

(1) x 830 tie-points breadboard

(8) x leds

(8) x 220 ohm resistors

(1) x 74hc595 IC

(14) x M-M wires (Male to Male jumper wires)

Wiring diagram

Connection Schematic

Arduino
Uno

(Rev3)

74HC595

Q1

Q2

Q3

Q4

Q5

Q6

Q7

GND

VCC

Q0

DS

OE

SH CP

ST CP

MR

Q7

220Ω

As we have eight LEDs and eight resistors to connect, there are actually quite a few connections
to be made.

It is probably easiest to put the 74HC595 chip in first, as pretty much everything else connects to it.
Put it so that the little U-shaped notch is towards the top of the breadboard. Pin 1 of the chip is to
the left of this notch.

Digital 12 from the UNO goes to pin #14 of the shift register
Digital 11 from the UNO goes to pin #12 of the shift register
Digital 9 from the UNO goes to pin #11 of the shift register

All but one of the outputs from the IC is on the left side of the chip. Hence, for ease of connection,
that is where the LEDs are, too.

After the chip, put the resistors in place. You need to be careful that none of the leads of the resistors
are touching each other. You should check this again before you connect the power to your UNO.
If you find it difficult to arrange the resistors without their leads touching, then it helps to shorten the
leads so that they are lying closer to the surface of the breadboard.

Next, place the LEDs on the breadboard. The longer positive LED leads must all be towards the chip,
whichever side of the breadboard they are on.

Attach the jumper leads as shown above. Do not forget the one that goes from pin 8 of the IC to the
GND column of the breadboard.

Load up the sketch listed a bit later and try it out. Each LED should light in turn until all the LEDs are
on, and then they all go off and the cycle repeats.

int latchPin = 11;
int clockPin = 9;
int dataPin = 12;

byte leds = 0;

void setup()
{
pinMode(latchPin, OUTPUT);
pinMode(dataPin,
OUTPUT);
pinMode(clockPin,
OUTPUT);
}

Code
After wiring, please open the program in the code folder- Eight_LED_with_74HC595_Flash_LED and
click UPLOAD to upload the program. See Lesson 5 of part 1 for details about program uploading if
there are any errors.

The first thing we do is define the three pins we are going to use. These
are the UNO digital outputs that will be connected to the latch, clock and
data pins of the 74HC595.

Next, a variable called 'leds' is defined. This will be used to hold the pattern
of which LEDs are currently turned on or off. Data of type 'byte' represents
numbers using eight bits. Each bit can be either on or off, so this is perfect
for keeping track of which of our eight LEDs are on or off.

The 'setup' function just sets the three pins we are using to be digital
outputs.

The 'loop' function initially turns all the LEDs off, by giving the
variable 'leds' the value 0. It then calls 'updateShiftRegister' that
will send the 'leds' pattern to the shift register so that all the LEDs
turn off. We will deal with how 'updateShiftRegister' works later.

The loop function pauses for half a second and then begins to count from 0 to 7 using the 'for' loop
and the variable 'i'. Each time, it uses the Arduino function 'bitSet' to set the bit that controls that LED
in the variable 'leds'. It then also calls 'updateShiftRegister' so that the leds update to reflect what is
in the variable'leds'. There is then a half second delay before 'i' is incremented and the next LED is lit.

The function 'updateShiftRegister', first of all sets the latchPin
 to low, then calls the UNO function 'shiftOut' before putting
the 'latchPin' high again. This takes four parameters, the first
two are the pins to use for Data and Clock respectively.

The third parameter specifies which end of the data you want
to start at. We are going to start with the right most bit, which i
s referred to as the 'Least Significant Bit' (LSB).

The last parameter is the actual data to be shifted into
the shift register, which in this case is 'leds'.

void loop()
{
leds = 0;
updateShiftRegister();
delay(500);
for (int i = 0; i < 8; i++)
{
bitSet(leds, i);
updateShiftRegister();
delay(500);
}
}

void updateShiftRegister()
{
digitalWrite(latchPin, LOW);
shiftOut(dataPin, clockPin,
LSBFIRST, leds);
digitalWrite(latchPin, HIGH);
}

If you wanted to turn one of the LEDs off rather than on, you would call a similar Arduino function
(bitClear) with the 'leds' variable. This will set that bit of 'leds' to be 0 and you would then just need
to follow it with a call to 'updateShiftRegister' to update the actual LEDs.

