
 IR Receiver
 Module

Part 2

Overview
Using an IR Remote is a great way to have wireless control of your project.

Infrared remotes are simple and easy to use. In this tutorial we will be connecting the IR receiver to
the UNO, and then use a Library that was designed for this particular sensor.

In our sketch we will have all the IR Hexadecimal codes that are available on this remote, we will also
detect if the code was recognized and also if we are holding down a key.

Component Required:

IR detectors are little microchips with a photocell that are tuned to listen to infrared light. They are
almost always used for remote control detection - every TV and DVD player has one of these in the
front to listen for the IR signal from the clicker. Inside the remote control is a matching IR LED, which
emits IR pulses to tell the TV to turn on, off or change channels. IR light is not visible to the human eye,
which means it takes a little more work to test a setup.

There are a few difference between these and say a CdS Photocells:
IR detectors are specially filtered for IR light, they are not good at detecting visible light. On the other
hand, photocells are good at detecting yellow/green visible light, and are not good at IR light.

IR detectors have a demodulator inside that looks for modulated IR at 38 KHz. Just shining an IR
LED won't be detected, it has to be PWM blinking at 38KHz. Photocells do not have any sort of
demodulator and can detect any frequency (including DC) within the response speed of the
photocell (which is about 1KHz)

IR detectors are digital out - either they detect 38KHz IR signal and output low (0V) or they do not detect
any and output high (5V). Photocells act like resistors, the resistance changes depending on how much
light they are exposed to.

As you can see from these datasheet graphs, the
peak frequency detection is at 38 KHz and the
peak LED color is 940 nm. You can use from
about 35 KHz to 41 KHz but the sensitivity will
drop off so that it won't detect as well from afar.
Likewise, you can use 850 to 1100 nm LEDs but
they won't work as well as 900 to 1000nm so
make sure to get matching LEDs! Check the
 datasheet for your IR LED to verify the wavelength.

Try to get a 940nm - remember that 940nm is not visible light!

IR RECEIVER SENSOR:

Component Introduction

(1) x Elegoo Uno R3

(1) x IR receiver module

(1) x IR remote

(3) x F-M wires (Female to Male DuPont wires)

33
0

20

40

60

80

100

35 37 39 41 43

B.P.F frequency characteristics
(PNA4602M)*

Carrier frequency (kHz)
* The peaks for PNA4601M,PNA4608M,

and PNA4610M are all f0.

Re
la

tiv
e

se
ns

iti
vi

ty
 S

(%
)

600
0

20

40

60

80

100

700 800 900 1000 1100 1200

Spectral sensitivity charactenristics

Re
la

tiv
e

se
ns

iti
vi

ty
 S

(%
)

Wavelength λ(nm)

Connection Schematic

There are 3 connections to the IR Receiver.
The connections are: Signal, Voltage and Ground.
The “G” is the Ground, “Y” is signal, and “R” is Voltage 5V. Wiring diagram

Arduino
Uno

(Rev3)

GND

VCC

DATA

switch(results.value)

 {
case 0xFFA25D: Serial.println("POWER"); break;
case 0xFFE21D: Serial.println("FUNC/STOP"); break;
......
default:
Serial.println(" other button ");

}// End Case

Code
After wiring, please open the program in the code folder- IR_Receiver_Module and click UPLOAD
to upload the program. See Lesson 5 in part 1 for details about program uploading if there
are any errors.

switch...case

[Control Structure]
Description

Before you can run this, make sure that you have installed the < IRremote > library or re-install it,
if necessary. Otherwise, your code won't work.

For details about loading the library file, see Lesson 5 in part 1.

Next we will move the <RobotIRremote> out of the Library folder, we do this because that library
 conflicts with the one we will be using. You can just drag it back inside the library folder once
you have done programming your microcontroller.

Once you have installed the Library, just go ahead and restart your IDE Software.

Like if statements, switch case controls the flow of programs by allowing programmers to specify
different code that should be executed in various conditions. In particular, a switch statement compares
the value of a variable to the values specified in case statements. When a case statement is found whose
value matches that of the variable, the code in that case statement is run.

The break keyword exits the switch statement, and is typically used at the end of each case.
Without a break statement, the switch statement will continue executing the following expressions
("falling-through") until a break, or the end of the switch statement is reached.

Syntax

Parameters
var: A variable whose value to compare with various cases. Allowed data types: int, char.
label1, label2: constants. Allowed data types: int, char.

Returns
Nothing

switch (var) {
 case label1:
 // statements
 break;
 case label2:
 // statements
 break;
 default:
 // statements
 break;
}

